Quantum teleportation breakthrough as researchers send photon of light 15.5 MILES
comments
It may not lead to Star Trek teleportation, but researchers have revealed a major breakthrough in quantum teleportation.
Researchers succeeded in teleporting information about the quantum state of a photon, a particle of light, over 15.5 miles (25 kilometers) of optical fiber to a crystal 'memory bank,' setting a new record of distance traveled in this manner.
The research could have implications for cryptography, which involves transmitting information securely, including communications between Earth and spacecraft.
This image shows crystals used for storing entangled photons, which behave as though they are part of the same whole. Scientists used these crystals in their process of teleporting the state of a photon across more than 15 miles (25 kilometers) of optical fiber.
The new research co-authored by Francesco Marsili, microdevices engineer at NASA's Jet Propulsion Laboratory, Pasadena, California, makes use of this phenomenon in a technological advancement published in the journal Nature Photonics.
The previous record in optical fiber was 3.7 miles (6 kilometers).
This complex phenomenon is called 'quantum teleportation.'
The research could have implications for cryptography, which involves transmitting information securely, including communications between Earth and spacecraft.
'We can imprint the state of a system on another system, even when the two are far apart,' Marsili said.
'Using this effect in communications could help in building an intrinsically secure space communication network -- i.e., communication channels that cannot be hacked.'
Marsili and colleagues at the National Institute of Standards and Technology (NIST), Boulder, Colorado, developed devices that can detect single particles of light, called photons.
'It's hard to detect a single photon, so you need to make a sensitive detector,' he said. 'Here at JPL, in collaboration with NIST, we developed the most sensitive detector in the world.'
'In an entangled system, each part is connected to one another in a fundamental way, such that any action performed on a part of the entangled system has an effect on the whole entangled system,' Marsili said.
Quantum teleportation doesn't mean someone can pop from New York to San Francisco instantaneously, but it seems like science fiction in the sense that the state of a particle (photon P) is destroyed at one location but imprinted on another remote system (photon B) without the two particles ever interacting.
Another crucial piece of this story is that Bob has a specific crystal, which serves as a memory bank, for storing his entangled photon and serving as the recipient of the quantum state.
The researchers reached the record distance of 15.5 miles (25 kilometers) between 'Alice' and 'Bob' thanks to the ultrasensitive detectors developed at JPL-NIST.
'Reaching this distance could not have been possible without the JPL NIST detectors,' said Félix Bussières at the University of Geneva, Switzerland, who is the lead author of the study.
Quantum teleportation can be used to make systems, such as bank accounts, more secure over longer distances. This is also important to preventing attacks on communication channels in space.
'If you're communicating with your astronauts on Mars, you don't want to have hackers break the encrypted channel and give them false information,' Marsili said.
The California Institute of Technology manages JPL for NASA.
Put the internet to work for you.
0 comments:
Post a Comment